MMDB: annotating protein sequences with Entrez's 3D-structure database
نویسندگان
چکیده
Three-dimensional (3D) structure is now known for a large fraction of all protein families. Thus, it has become rather likely that one will find a homolog with known 3D structure when searching a sequence database with an arbitrary query sequence. Depending on the extent of similarity, such neighbor relationships may allow one to infer biological function and to identify functional sites such as binding motifs or catalytic centers. Entrez's 3D-structure database, the Molecular Modeling Database (MMDB), provides easy access to the richness of 3D structure data and its large potential for functional annotation. Entrez's search engine offers several tools to assist biologist users: (i) links between databases, such as between protein sequences and structures, (ii) pre-computed sequence and structure neighbors, (iii) visualization of structure and sequence/structure alignment. Here, we describe an annotation service that combines some of these tools automatically, Entrez's 'Related Structure' links. For all proteins in Entrez, similar sequences with known 3D structure are detected by BLAST and alignments are recorded. The 'Related Structure' service summarizes this information and presents 3D views mapping sequence residues onto all 3D structures available in MMDB (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=structure).
منابع مشابه
MMDB: Entrez's 3D structure database
Three-dimensional structures are now known within most protein families and it is likely, when searching a sequence database, that one will identify a homolog of known structure. The goal of Entrez's 3D-structure database is to make structure information and the functional annotation it can provide easily accessible to molecular biologists. To this end, Entrez's search engine provides several p...
متن کاملMMDB: 3D structure data in Entrez
Three-dimensional structures are now known for roughly half of all protein families. It is thus quite likely, in searching sequence databases, that one will encounter a homolog with known structure and be able to use this information to infer structure-function properties. The goal of Entrez's 3D structure database is to make this information accessible and useful to molecular biologists. To th...
متن کاملMMDB: 3D structures and macromolecular interactions
Close to 60% of protein sequences tracked in comprehensive databases can be mapped to a known three-dimensional (3D) structure by standard sequence similarity searches. Potentially, a great deal can be learned about proteins or protein families of interest from considering 3D structure, and to this day 3D structure data may remain an underutilized resource. Here we present enhancements in the M...
متن کاملPrediction of 3D protein Structure based on Mutation of AKAP3 and PLOD3 Gene in Case of Non-Obstructive Azoospermia
Background: The present study has been designed with the aim of evaluating A-kinase anchoring proteins 3 (AKAP3)and Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 3 (PLOD3) gene mutations and prediction of 3D proteinstructure for ligand binding activity in the cases of non-obstructive azoospermic male.Materials and Methods: Clinically diagnosed cases of non-obstructive azoos...
متن کاملMMDB and VAST+: tracking structural similarities between macromolecular complexes
The computational detection of similarities between protein 3D structures has become an indispensable tool for the detection of homologous relationships, the classification of protein families and functional inference. Consequently, numerous algorithms have been developed that facilitate structure comparison, including rapid searches against a steadily growing collection of protein structures. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007